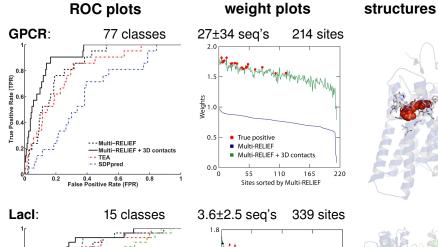
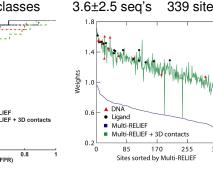
Multi-RELIEF: specificity-determining residues from alignments by Machine Learning and Feature Weighting

K. Anton Feenstra², Kai Ye¹, Jaap Heringa², Adriaan P. IJzerman¹, Elena Marchiori²

¹ Div. of Med. Chem., LACDR, Leiden Univ., Leiden, NL

² Dept. of Comp. Sci., IBIVU, Free Univ., Amsterdam, NL


Contact: feenstra@few.vu.nl, k.ye@lacdr.leidenuniv.nl, heringa@few.vu.nl, elena@few.vu.nl, ijzerman@lacdr.leidenuniv.nl


Download this poster at: www.few.vu.nl/~feenstra/posters.html

→ Multi-RELIEF

We introduce multi-RELIEF, a new algorithm for identifying specificity-determining residues in proteins from an alignment and predefined multiple classes. The approach is based on a state-of-the-art Machine Learning technique for feature weighting, called RELIEF, which exploits the notion of locality for estimating relevance of attributes in discriminating samples from two classes [1], and is complementary to previous method developed by us, Sequence Harmony [2] and Two Entropies [3]. Multi-RELIEF can be used through a web-interface at www.ibi.vu.nl/programs/multirelief/.

→ Benchmark data

→ Discussion & Conclusion

- → Multi-RELIEF outperforms the other methods. The ROC plots and areas under the curve show multi-RELIEF to be superior to the other methods in five out of seven datasets. Overall best performance is obtained by Multi-RELIEF + 3D.
- → Inclusion of 3D contacts improves the predictions. Maximum gain is seen in GPCR and LacI datasets, which have specificity sites defined around ligand-binding areas that are local in the structure. In the other datasets, specificity is related to protein-protein interactions (Smad and Ras superfamily) or (membrane) channel function (AQP/GLP).
- → Complex cases of specificity can be handled. The GPCR family contains 77 classes; with 20 aminoacids no single site could be strictly specific for all classes. The high performance of multi-RELIEF shows its strength in identifying sites that are specific for only a subset of classes.
- → Multi-RELIEF is sensitive to the variation within classes and captures subtle evolutionary signals from the more redundant sequences. This may explain the lower performance on the GPCR-190 dataset which was pruned by a 65% redundancy threshold.

Concluding, the use of feature weighting by multi-RELIEF incorporates conservation locally in sequence space and can capture correlations between different sites in a protein sequence. The benchmark cases shown here indicate the strength and robustness of this approach for specificity prediction in proteins.

Areas under curve in the ROC plots, averages per method relative to multi-RELIEF, and per dataset (best in bold).

method	GPCR	GPCR 190	Lacl	Rab5/ Rab6	Ras/ Ral	AQP/ GLP	Smad	Avg.
multi-RELIEF	0.83	0.78	0.80	0.90	0.97	0.83	0.97	0.000
+3D	0.91	0.84	0.85	0.86	0.91	0.84	0.96	0.003
TEA	0.80	0.89	0.80	0.79	0.86	0.84	0.96	-0.039
SH	_	_	_	0.86	0.95	0.75	0.98	-0.033
SDPpred	0.63	0.90	0.80	0.83	0.96	0.78	0.84	-0.058
TreeDet/MB	_	0.63	0.66	0.85	0.92	0.79	0.96	-0.073
Average	0.79	0.81	0.78	0.85	0.93	0.81	0.95	

Method

Toy example | and weights computed by multi-RELIEF

	a	b	c	d	e	
<i>C1</i>	R	F	Т		Т	
	R	F	Τ	Q	F	
	R	F	Τ	Ν	٧	
	R	F	Τ	Α	D	
C2	R	F	Υ	S	Т	_
	R	F	Υ	F	F	
	R	F	Υ	D	٧	
	R	F	Υ	٧	D	1
<i>C3</i>	R	Υ	D	Е	Т	3
	R	Υ	D	٧	F	
	R	Υ	D	W	٧	
	R	Υ	D	G	D	
C4	R	Υ	Н	Н	Τ	•
No.	R	Υ	Н	Ρ	F	
	R	Υ	Н	Υ	٧	
	R	Υ	Н	С	D	c
weights	0	1	1	0	-1	9

Pseudo-code | of the multi-RELIEF algorithm

%input: X₁,...,X_m % (m classes of aligned proteins) %output: multi % (weights assigned to positions) $nr_{positions} = total number$ of positions; weights = zero vector of size $nr_{positions}$; for i=1: nr_iter select randomly two classes $X = select randomly nr_{sample}$ sequences from the two selected classes W_{i} = apply RELIEF to X for s=1: nr_{positions} $multi_{w}(s) = (average across$ positive $W_{i}(s)'s$;

The input of multi-RELIEF is a multiple alignment of a protein family and a subdivision into groups. The groups are considered classes and the sites features. In multi-RELIEF, multiple runs of RELIEF are performed on pairs of classes. At each run i, a number of sequences are randomly selected from two randomly selected classes, and RELIEF is applied to the resulting two classes. From the output vectors W_i , the positive weights of each position are averaged to yield the final multi-RELIEF output vector with feature weights. 3D structural information can be used to increment multi-RELIEF weights with the average weight of all 3D neighbors (non-sequential and have shared surface area according to the 'CMA' method [4]).

References

- [1] Ye, K, KA Feenstra, J Heringa, AP IJzerman, E Marchiori "Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a Machine Learning approach for feature weighting", Bioinformatics, in press (2007).
- [2] Feenstra, KA, W Pirovano, K Krab & J Heringa "Sequence Harmony: Detecting Functional
- Specificity from Alignments", Nucl. Acid. Res., 35: W495 2007.
 Ye, K, E Lameijer, M Beukers, and A IJzerman. "A two-entropies analysis to identify functional positions in the transmembrane region of class a g proteincoupled receptors" Proteins, 63, 1018–30 2006.
- [4] Sobolev, V, A Sorokine, J Prilusky, E Abola, and M Edelman "Automated analysis of interatomic contacts in proteins". Bioinformatics, 15, 327–332 1999.

Leiden / Amsterdam Center for Drug Research

return multi

